Continuum Model for the Phase Behavior, Microstructure, and Rheology of Unentangled Polymer Nanocomposite Melts

نویسندگان

  • Pavlos S. Stephanou
  • Vlasis G. Mavrantzas
  • Georgios C. Georgiou
چکیده

We introduce a continuum model for polymer melts filled with nanoparticles capable of describing in a unified and self-consistent way their microstructure, phase behavior, and rheology in both the linear and nonlinear regimes. It is based on the Hamiltonian formulation of transport phenomena for fluids with a complex microstructure with the final dynamic equations derived by means of a generalized (Poisson plus dissipative) bracket. The model describes the polymer nanocomposite melt at a mesoscopic level by using three fields (state variables): a vectorial (the momentum density) and two tensorial ones (the conformation tensor for polymer chains and the orientation tensor for nanoparticles). The dynamic equations are developed for nanoparticles with an arbitrary shape but then they are specified to the case of spherical ones. Restrictions on the parameters of the model are provided by analyzing its thermodynamic admissibility. A key ingredient of the model is the expression for the Helmholtz free energy A of the polymer nanocomposite. At equilibrium this reduces to the form introduced by Mackay et al. (Science 2006, 311, 1740−1743) to explain the phase behavior of polystyrene melts filled with silica nanoparticles. Beyond equilibrium, A contains additional terms that account for the coupling between microstructure and flow. In the absence of chain elasticity, the proposed evolution equations capture known models for the hydrodynamics of a Newtonian suspension of particles. A thorough comparison against several sets of experimental and simulation data demonstrates the unique capability of the model to accurately describe chain conformation and swelling in polymer melt nanocomposites and to reliably fit measured rheological data for their shear and complex viscosity over large ranges of volume fractions and deformation rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Rheology of Unentangled Polymer Melts Reinforced with High Concentration of Rigid Nanoparticles

A scaling model is presented to analyze the nonlinear rheology of unentangled polymer melts filled with high concentration of small spherical particles. Assuming the majority of chains to be reversibly adsorbed to the surface of the particles, we show that the emergence of nonlinearity in the viscoelastic response of the composite system subjected to a 2D shear flow results from stretching of t...

متن کامل

Network model for the viscoelastic behavior of polymer nanocomposites

A theoretical network model reproducing some significant features of the viscoelastic behavior of unentangled polymer melts reinforced with well dispersed non-agglomerated nanoparticles is presented. Nanocomposites with low filler volume fraction (w10%) and strong polymer–filler interactions are considered. The model is calibrated based on results obtained from discrete simulations of the equil...

متن کامل

Interfacial slip in sheared polymer blends.

We have developed a dynamic self-consistent field theory, without any adjustable parameters, for unentangled polymer blends under shear. Our model accounts for the interaction between polymers, and enables one to compute the evolution of the local rheology, microstructure, and the conformations of the polymer chains under shear self-consistently. We use this model to study the interfacial dynam...

متن کامل

Effect of chain stiffness and temperature on the dynamics and microstructure of crystallizable bead-spring polymer melts.

We contrast the dynamics in model unentangled polymer melts of chains of three different stiffnesses: flexible, intermediate, and rodlike. Flexible and rodlike chains, which readily solidify into close-packed crystals (respectively, with randomly oriented and nematically aligned chains), display simple melt dynamics with Arrhenius temperature dependence and a discontinuous change upon solidific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014